MATH 32 FALL 2012
FINAL EXAM - PRACTICE EXAM SOLUTIONS
(1) (6 points) Solve the equation $|x-1|=3$.

Solution: Since $|x-1|=3, x-1=3$ or $x-1=-3$. Solving for $x, x=4$ or $x=-2$.
(2) In the triangle below, let $a=4, b=2$, and $c=\sqrt{22}$.

(a) (3 points) Find $\cos (C)$.

Solution: The law of cosines says $a^{2}+b^{2}-2 a b \cos (C)=c^{2}$. So

$$
\begin{aligned}
4^{2}+2^{2}-2(4)(2) \cos (C) & =\sqrt{22}^{2} \\
20-16 \cos (C) & =22 \\
-16 \cos (C) & =2 \\
\cos (C) & =-\frac{2}{16}=-\frac{1}{8} .
\end{aligned}
$$

(b) (3 points) Find the area of the triangle.

Solution: The area of the triangle is $\frac{1}{2} a b \sin (C)$, so we need to find $\sin (C)$.

$$
\begin{aligned}
\sin ^{2}(C)+\cos ^{2}(C) & =1 \\
\sin ^{2}(C)+\left(-\frac{1}{8}\right)^{2} & =1 \\
\sin ^{2}(C) & =1-\frac{1}{64} \\
\sin (C) & = \pm \sqrt{\frac{63}{64}}=\frac{\sqrt{63}}{8}
\end{aligned}
$$

Here we take the positive value because $0<\theta<\pi$, and hence $\sin (\theta)>0$.
So the area is $\frac{1}{2}(2)(4) \frac{\sqrt{63}}{8}=\frac{\sqrt{63}}{2}$.
(3) (6 points) Sketch a graph of $y=x^{4}+3 x^{3}+2 x^{2}$. Label the x-intercepts.

Solution: Factoring, we have $y=x^{2}(x+1)(x+2)$. So the zeros of the polynomial are $0,-1$, and -2 , and the x-intercepts are $(-2,0),(-1,0)$, and $(0,0)$.

Next we'll do some sign analysis.

	$(-\infty,-2)$	$(-2,-1)$	$(-1,0)$	$(0, \infty)$
x^{2}	+	+	+	+
$x+1$	-	-	+	+
$x+2$	-	+	+	+
Total:	+	-	+	+

Finally, since this is a polynomial which is positive as x gets large and negative and as x gets large and positive, the values of the function to go $+\infty$ in both directions.

Here is a graph:

(4) (6 points) Solve the equation $2^{x}=8^{2 x-4}$.

Solution: We'll take the logarithm base 2 of both sides:

$$
\begin{aligned}
\log _{2} 2^{x} & =\log _{2} 8^{2 x-4} \\
x & =(2 x-4) \log _{2} 8 \\
x & =(2 x-4) \cdot 3 \\
x & =6 x-12 \\
-5 x & =-12 \\
x & =\frac{12}{5}
\end{aligned}
$$

(5) (6 points) Find two points (x, y) on the line $y=2 x+3$ which are at distance 3 from the origin $(0,0)$.

Solution: A point on the line $y=2 x+3$ has the form $(x, 2 x+3)$. Using the distance formula, the following equation expresses that this point is at distance 3 from the origin:

$$
\begin{aligned}
\sqrt{(x-0)^{2}+((2 x+3)-0)^{2}} & =3 \\
x^{2}+(2 x+3)^{2} & =9 \\
x^{2}+4 x^{2}+12 x+9 & =9 \\
5 x^{2}+12 x & =0 \\
5 x\left(x+\frac{12}{5}\right) & =0
\end{aligned}
$$

So $x=0$ or $x=-\frac{12}{5}$.
If $x=0, y=2(0)+3=3$. If $x=-\frac{12}{5}, y=2 \frac{-12}{5}+3=-\frac{24}{5}+\frac{15}{5}=-\frac{9}{5}$.
So the two points are $(0,3)$ and $\left(-\frac{12}{5},-\frac{9}{5}\right)$.
(6) (6 points) Suppose that $\sin (\theta)=-\frac{2}{3}$ and $\frac{3 \pi}{2}<\theta<2 \pi$. Find $\cos \left(\frac{\theta}{2}\right)$.

Solution: We need to use the half-angle formula for cosine, $\cos \left(\frac{\theta}{2}\right)= \pm \sqrt{\frac{1+\cos (\theta)}{2}}$. So first we need to find $\cos (\theta)$.

$$
\begin{aligned}
\sin ^{2}(\theta)+\cos ^{2}(\theta) & =1 \\
\left(-\frac{2}{3}\right)^{2}+\cos ^{2}(\theta) & =1 \\
\cos ^{2}(\theta) & =1-\frac{4}{9} \\
\cos (\theta) & = \pm \sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{3}
\end{aligned}
$$

Here we take the positive value, because $\frac{3 \pi}{2}<\theta<2 \pi$, i.e. θ is in the 4 th quadrant, so $\cos (\theta)>0$. Now:

$$
\begin{aligned}
\cos \left(\frac{\theta}{2}\right) & = \pm \sqrt{\frac{1+\cos (\theta)}{2}} \\
& = \pm \sqrt{\frac{1+\frac{\sqrt{5}}{3}}{2}} \\
& = \pm \sqrt{\frac{\frac{3+\sqrt{5}}{3}}{2}} \\
& = \pm \sqrt{\frac{3+\sqrt{5}}{6}}
\end{aligned}
$$

Now we need to choose a sign. Since $\frac{3 \pi}{2}<\theta<2 \pi, \frac{3 \pi}{4}<\frac{\theta}{2}<\pi$, so $\frac{\theta}{2}$ is in the 2 nd quadrant, and $\cos \left(\frac{\theta}{2}\right)$ is negative. So

$$
\cos \left(\frac{\theta}{2}\right)=-\sqrt{\frac{3+\sqrt{5}}{6}}
$$

(7) (6 points) Suppose a bank promises that money placed in a certain account will triple in 20 years. Assuming that interest is compounded continuously, what interest rate must the bank offer to make good on their promise?

Solution: Interest is compounded continuously, so we use the formula $A=P e^{r t}$. Here $t=20$ (the time in years), $A=3 P$ (we're tripling the principal), and r is the quantity we'd like to find. So

$$
\begin{aligned}
3 P & =P e^{r \cdot 20} \\
3 & =e^{20 r} \\
\ln (3) & =\ln \left(e^{20 r}\right) \\
\ln (3) & =20 r \\
r & =\frac{\ln (3)}{20}
\end{aligned}
$$

(8) (6 points) Show that for all $\theta, \tan (\theta) \sin (\theta)=\sec (\theta)-\cos (\theta)$.

Solution: I'll start with the left hand side.

$$
\begin{aligned}
\tan (\theta) \sin (\theta) & =\frac{\sin (\theta)}{\cos (\theta)} \sin (\theta) \\
& =\frac{\sin ^{2}(\theta)}{\cos (\theta)} \\
& =\frac{1-\cos ^{2}(\theta)}{\cos (\theta)} \\
& =\frac{1}{\cos (\theta)}-\frac{\cos ^{2}(\theta)}{\cos (\theta)} \\
& =\sec (\theta)-\cos (\theta)
\end{aligned}
$$

(9) (6 points) Find all values of x satisfying

$$
\sin ^{-1}(x)=\cos ^{-1}\left(\frac{2}{3}\right)+\frac{\pi}{3} .
$$

Express your answer without using any trig or inverse trig functions.
Solution: Take sin of both sides. We'll use the fact that $\sin \left(\sin ^{-1}(x)\right)=x, \cos \left(\cos ^{-1}(x)\right)=$ x, and the angle sum formula for sin.

$$
\begin{aligned}
\sin \left(\sin ^{-1}(x)\right) & =\sin \left(\cos ^{-1}\left(\frac{2}{3}\right)+\frac{\pi}{3}\right) \\
x & =\sin \left(\cos ^{-1}\left(\frac{2}{3}\right)\right) \cos \left(\frac{\pi}{3}\right)+\cos \left(\cos ^{-1}\left(\frac{2}{3}\right)\right) \sin \left(\frac{\pi}{3}\right) \\
& =\sin \left(\cos ^{-1}\left(\frac{2}{3}\right)\right)\left(\frac{1}{2}\right)+\left(\frac{2}{3}\right)\left(\frac{\sqrt{3}}{2}\right) .
\end{aligned}
$$

It remains to find $\sin \left(\cos ^{-1}\left(\frac{2}{3}\right)\right)$. To do this, we draw a triangle:

Here $\cos (A)=\frac{2}{3}$, so $A=\cos ^{-1}\left(\frac{2}{3}\right)$. We have $2^{2}+b^{2}=3^{2}$, so $b^{2}=9-4$, and $b=\sqrt{5}$. Then $\sin \left(\cos ^{-1}\left(\frac{2}{3}\right)\right)=\sin (A)=\frac{\sqrt{5}}{3}$. So:

$$
\begin{aligned}
x & =\left(\frac{\sqrt{5}}{3}\right)\left(\frac{1}{2}\right)+\left(\frac{2}{3}\right)\left(\frac{\sqrt{3}}{2}\right) \\
& =\frac{\sqrt{5}}{6}+\frac{2 \sqrt{3}}{6} \\
& =\frac{\sqrt{5}+2 \sqrt{3}}{6} .
\end{aligned}
$$

(10) (6 points) Find the vertex of the parabola given by $y=2 x^{2}+8 x+9$.

Solution: Completing the square,

$$
\begin{aligned}
y & =2\left(x^{2}+4 x\right)+9 \\
& =2\left((x+2)^{2}-4\right)+9 \\
& =2(x+2)^{2}-8+9 \\
& =2(x+2)^{2}+1
\end{aligned}
$$

So the vertex is $(-2,1)$.
(11) Let $f(x)=3 \ln (x)+\ln \left(\frac{1}{x}\right)$.
(a) (3 points) What are the domain and range of f ? To find the range, it may be helpful to simplify the formula for f a bit.

Solution: Domain: $(0, \infty)$.
This is because the domain of $\ln (x)$ is $(0, \infty)$, and if $x>0, \frac{1}{x}>0$, so there are no problems as long as x is positive.
To see the range, we'll rewrite $f(x)$.

$$
\begin{aligned}
f(x) & =3 \ln (x)+\ln \left(\frac{1}{x}\right) \\
& =\ln \left(x^{3}\right)+\ln \left(\frac{1}{x}\right) \\
& =\ln \left(x^{3} \cdot \frac{1}{x}\right) \\
& =\ln \left(x^{2}\right) \\
& =2 \ln (x) .
\end{aligned}
$$

Since the range of $\ln (x)$ is $(-\infty, \infty)$, doubling all the output values still gives $(-\infty, \infty)$. You can also see this by viewing the graph of $f(x)$ as a vertical stretch by 2 of the graph of $\ln (x)$.
Range: $(-\infty, \infty)$.
(b) (3 points) Find a formula for f^{-1}.

Solution: Set $x=3 \ln (y)+\ln \left(\frac{1}{y}\right)$ and solve for y.
We'll rewrite the right-hand side exactly as above to get

$$
\begin{aligned}
& x=2 \ln (y) \\
& \frac{x}{2}=\ln (y) \\
& y=e^{\frac{x}{2}}=\left(e^{x}\right)^{\frac{1}{2}}=\sqrt{e^{x}} .
\end{aligned}
$$

So $f^{-1}(x)=\sqrt{e^{x}}$ or $f^{-1}(x)=e^{\frac{x}{2}}$, whichever you prefer.
(12) You rest a 6 -foot-tall ladder against a 4 -foot-tall fence so that the top of the ladder meets the top of the fence.
(a) (3 points) What angle does the ladder make with the ground?

Solution: Here is a picture:

Calling the angle with the ground $\theta, \sin (\theta)=\frac{4}{6}$, so $\theta=\sin ^{-1}\left(\frac{4}{6}\right)=\sin ^{-1}\left(\frac{2}{3}\right)$.
(b) (3 points) How far away from the base of the wall is the base of the ladder?

Solution: We need to find the side lenght labeled a in the picture. By the Pythagorean theorem, $a^{2}+4^{2}=6^{2}$, so $a^{2}=36-16$, and $a=\sqrt{20}$ or $2 \sqrt{5} \mathrm{ft}$.
(13) (6 points) What is 3° in radians?

Solution: $3^{\circ}=3^{\circ} \cdot \frac{\pi}{180^{\circ}}=\frac{3 \pi}{180}=\frac{\pi}{60}$ radians.
(14) (6 points) Find the domain of the following function:

$$
f(x)=\frac{\sqrt{2+x}}{\ln (1-x)} .
$$

Solution:

- We can't take the square root of a negative number. We must have $2+x \geq 0$, so $x \geq-2$.
- We can only take the natural \log of a positive number. We must have $1-x>0$, so $-x>-1$, and $x<1$.
- We can't divide by 0 . The denominator is 0 when $\ln (1-x)=0$, which is when $1-x=e^{0}=1$, when $x=0$. So 0 must be excluded from the domain.
Putting this together, we have as our domain $[-2,0) \cup(0,1)$.
(15) (6 points) Give an example of a periodic function with amplitude $\frac{1}{2}$ and period 3 whose graph goes through the point $(0,2)$.

Solution: There are many ways to answer this, but here's an example. I'll start with \sin as a base function, because I know it is periodic with period 2π and amplitude 1 , and it goes through $(0,0)$.

I'll write down a function of the form $f(x)=a \sin (h x)+v$.
The amplitude of a function of this form is a, so $a=\frac{1}{2}$.
The period is $\frac{2 \pi}{h}$, so $\frac{2 \pi}{h}=3,2 \pi=3 h, h=\frac{2 \pi}{3}$.
And $f(0)=a \sin (h \cdot 0)+v=v$, so $v=2$.
Here's our function: $f(x)=\frac{1}{2} \sin \left(\frac{2 \pi}{3} x\right)+2$.

